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SUMMARY

This paper provides a comparison of five finite element pairs for the shallow water equations. We consider
continuous, discontinuous and partially discontinuous finite element formulations that are supposed to
provide second-order spatial accuracy. All of them rely on the same weak formulation, using Riemann
solver to evaluate interface integrals. We define several asymptotic limit cases of the shallow water equations
within their space of parameters. The idea is to develop a comparison of these numerical schemes in several
relevant regimes of the subcritical shallow water flow. Finally, a new pair, using non-conforming linear
elements for both velocities and elevation (PNC

1 –PNC
1 ), is presented, giving optimal rates of convergence

in all test cases. PNC
1 –P1 and PDG

1 –P1 mixed formulations lack convergence for inviscid flows. PDG
1 –P2

pair is more expensive but provides accurate results for all benchmarks. PDG
1 –PDG

1 provides an efficient
option, except for inviscid Coriolis-dominated flows, where a small lack of convergence is observed.
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1. INTRODUCTION

The shallow water equations are a classical model used in a wide area of physics and engineering.
They govern flows in estuaries, enable modeling of dam-breaks, floods and tides, and are a key
building block for ocean modeling as well as atmosphere modeling. Different numerical methods
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have been designed for the shallow water equations. Finite volumes are very popular for small scale
applications as well as atmosphere modeling, whereas ocean models are mainly based on finite
difference methods [1], as described for instance in the book [2]. In the finite element framework,
major contributions have been developed with both discontinuous and continuous elements.

The discontinuous Galerkin (DG) method has been growing interest since the late nineties, and
gives accurate results for hyperbolic conservation laws. Basically, it consists of a volume term
built as in all finite element methods, and an interface term built as in finite volume methods.
High-order shape functions can be easily incorporated and at the interfaces, an efficient upwind flux
calculation can be performed to tackle the treatment of wave phenomena. Thanks to the absence
of continuity constraints on the inter-element boundaries, h-adaptivity [3, 4] and p-adaptivity [5]
can be easily implemented. Efficient slope and flux limiters enable positive and shock-capturing
versions of the scheme [6–8]. For atmosphere modeling, the high-order capabilities of this scheme
are really attractive [9, 10], and the increasing use of DG follows the trend to replace spectral
transform methods with local ones. Coastal modeling also benefits from this method [11–13], and
high Froude number flows are accurately captured by these kinds of schemes [8, 14]. However,
the implementation of elliptic dissipative terms requires some specific modifications, as reviewed
in [15]. The local-DG method (LDG) and the interior penalty (IP) method are among the most
popular solutions. LDG introduces a mixed formulation for velocities and stress and can be difficult
to handle with an implicit time-stepping [16], while IP requires the introduction of a penalty
parameter that worsen the conditioning of the discrete spatial operator [17].

Continuous linear finite elements are compelling as they provide high geometric flexibility,
they are supposed to be much more accurate than first-order methods, and have less degrees
of freedom than linear DG methods. Further, they naturally handle elliptic operators used as
subgrid scale models. Several choices can be made between stable mixed methods and stabilized
methods. Stabilized methods were first designed for scalar advection–diffusion equations, where
the standard Galerkin method gives an oscillating result when the mesh Peclet number is too large
[18]. For shallow water models, [19–22] use a symmetric formulation that is stabilized with the
Petrov–Galerkin approach.

In this paper, we do not analyze stabilized continuous finite element methods, instead we choose
to use naturally stable finite elements. Furthermore, to develop a fair comparison with all stabilized
continuous formulations, it would require a very systematic analysis that is out of the scope of
this paper.

The search for an efficient mixed formulation for the shallow water equations without explicit
stabilization is described in a series of papers [23–29]. The favorite candidate is the PNC

1 −P1
pair, namely linear non-conforming PNC

1 for the velocities and linear conforming P1 for the
elevation. This pair was first presented in [30] within the framework of two-layer models. The
idea is simple: try to mimic the staggering of variables used in finite difference schemes in the
finite element framework. Reference [23] is a seminal review paper on mixed methods for finite
element shallow water and initiated several works on the PNC

1 –P1 mixed element pair. Further,
this pair has been shown to be free of spurious elevation modes [27], and it has been tested with
both Eulerian and Lagrangian discretizations of advection terms [26]. In the inviscid limit, the
semi-Lagrangian discretization of [26] exhibits a strong noise in the velocity field, which needs to
be filtered out. The Eulerian formulation described in this paper appears to avoid this noise, due
to the stabilizing effect of the upwind scheme on advection terms. The analysis of dispersion and
dissipation properties is performed in [28] where a semi-analytical dispersion relation is derived
on structured grids. Dissipation and dispersion relations are computed numerically on unstructured
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Figure 1. Sketch of the different finite elements used.

grids in [31]. It appears that the PNC
1 −P1 pair works really well on structured grids, but is

suboptimal on unstructured grids, in terms of accuracy [29] and in terms of dispersion. Recently,
a new mixed element, PDG

1 −P2, has been presented. Such an element exhibits stability and good
rates of convergence for the Stokes problem and the wave equation [32] and has been proven to
be LBB stable [33].

Within its space of parameters, the shallow water system has several asymptotic limit cases.
In the steady viscous limit, the well-known Stokes system is found. The linear non-rotating and
inviscid shallow water equations reduce to a wave equation. When Coriolis force is the leading
term, we observe a geostrophic equilibrium. An almost optimal finite element method is known
for each of those problems. The Stokes problem is a saddle-point problem, and the finite element
formulation needs to satisfy the LBB condition, which for Galerkin formulations lead to choose
a larger discrete space for velocities than for elevation, for instance P2–P1. The velocities and
elevation have a symmetric role in the wave equation, thus using the same space for both fields is
the natural solution. In the geostrophic limit, the space for velocities is the gradient of the space for
elevation and a pair like PDG

1 –PDG
2 appears to be best suited. Of course, in real life applications,

those different regimes are mixed, and a formulation at least stable in all ranges of parameters is
sought. Our typical domain of application is estuarine, coastal and ocean modeling. Therefore, we
do not focus on supercritical flows, where shocks require specific handling, while we are aware
that this regime is of crucial importance for smaller scale applications.

In this paper, we focus on numerical schemes where the stabilizing strategies are only applied
on the interface terms. It must be noted that it would be also possible to add stabilizing terms
in the surface terms as it is usual in continuous stabilized formulations. In general, continuous
stabilizing terms corresponds to adding diffusion with a coefficient depending on the element
size, in a more or less consistent manner. For discontinuous methods, the interfaces integrals are
estimated with an upwind bias introducing the right amount of dissipation to keep the scheme
stable. We provide here a comparison between different finite element pairs that all rely on the
same weak formulation: PDG

1 −PDG
1 , PNC

1 −PNC
1 , PNC

1 −P1, PDG
1 −P1 and PDG

1 −P2. A sketch
of those elements is given in Figure 1.

The outline of this paper is the following: Section 2 explains the methodology followed to
derive all the formulations in the framework of one-dimensional linear shallow water equations,
Section 3 details the formulation for the five finite element pairs considered, and finally, we assess
the qualities and drawbacks of each formulation in Section 4.

2. ONE-DIMENSIONAL ILLUSTRATION OF KEY CONCEPTS

In this section, the main concepts used in this paper are illustrated for the one-dimensional wave
equation, which is the simplest idealization of the shallow water equations. The one-dimensional
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wave equation reads

�2�
�t2

=gh
�2�
�x2

(1)

and is equivalent to the following system of equations, known as the linearized inviscid shallow
water equations in a non-rotating framework:

��

�t
+h

�u
�x

=0 (2)

�u
�t

+g
��

�x
=0 (3)

where u is the depth-averaged velocity, � the free-surface elevation, h the depth at rest and g the
gravitational acceleration.

We analyze the selection of mixed continuous or discontinuous spaces and the design of a
suitable Riemann solver. In particular, three different finite element pairs are considered:

• P1−P1 elements, for velocity and elevation, respectively.
• PDG

1 −PDG
1 elements, the one-dimensional equivalent to the PDG

1 −PDG
1 two-dimensional

pair and the closest to the PNC
1 −PNC

1 pair.
• PDG

1 −P1 elements, which is the closest to two-dimensional PNC
1 −P1 and PDG

1 −P1.

All mixed methods rely on the same weak formulation:〈
��

�t
�̂

〉
+
〈
h

�u
�x

�̂

〉
=0 (4)

〈
�u
�t

û

〉
+
〈
g

��

�x
û

〉
=0 (5)

with 〈 〉 denoting the integral over �, and �̂ and û the test functions. This domain � is then
discretized into a mesh or a collection of non-overlapping elements �e. Equations (4) and (5) can
be expressed as a sum of the integrals on each element:

∑
e

(〈
��

�t
�̂

〉
�e

+
〈
h

�u
�x

�̂

〉
�e

)
=0 (6)

∑
e

(〈
�u
�t

û

〉
�e

+
〈
g

��

�x
û

〉
�e

)
=0 (7)

Finally, in order to incorporate the local Neumann boundary condition, we integrate the gradient
terms by part: ∑

e

(〈
��

�t
�̂

〉
�e

+hu∗�̂
∣∣∣∣
��e

−
〈
hu

��̂

�x

〉
�e

)
=0 (8)

∑
e

(〈
�u
�t

û

〉
�e

+g�∗û
∣∣∣∣
��e

−
〈
g�

�û
�x

〉
�e

)
=0 (9)
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where f |��e
denotes the difference between f at the right end of the element and f at the left

end. The values of the fields at both ends of each interval are denoted with a star superscript,
because they need to be uniquely defined for both neighboring elements of the interface. The way
to define u∗ and �∗ is the key ingredient to obtain a stable and accurate numerical formulation.
Along interior interfaces, for continuous test functions, the boundary integral on the one element is
canceled out by the boundary integral on the other element, but it is not the case for discontinuous
test functions.

2.1. Riemann solver

To derive consistent values of fluxes u∗ and �∗ at the interface, relying on the characteristic
structure of the equations, it is usual to introduce Riemann solver for numerical methods. Riemann
solvers are a solution to deduce consistent values of fluxes. It allows to add just enough numerical
dissipation to keep the scheme stable. For a scalar advection equation, using the upwind value
at the interface introduces the right amount of dissipation that prevents the oscillations of the
numerical solution. The Riemann solvers can be viewed as the generalization of the upwinding
technique for systems of equations.

In matrix notation, the shallow water system of Equations (2) and (3) read as:(
�,t

u,t

)
+
(
0 h

g 0

)
︸ ︷︷ ︸

A

(
�,x

u,x

)
=
(
0

0

)
(10)

Let us now perform a change of variable such that the matrix A becomes diagonal. We then obtain
the shallow water equations in terms of the characteristic variables:

(
U

V

)
= R−1

(
�

u

)
=

⎛
⎜⎜⎝

�

2
+u

√
h/g

2

�

2
−u

√
h/g

2

⎞
⎟⎟⎠ (11)

where R is the matrix whose columns are eigenvectors of A:

R=
(

1 1√
g/h −√g/h

)
(12)

The system in terms of the characteristic variables corresponds to two uncoupled advection equa-
tions: (

U,t

V,t

)
+
(√

gh 0

0 −√gh

)(
U,x

V,x

)
=
(
0

0

)
(13)

We define the ∗ variables using the upwind value that depends on the sign of the eigenvalue:

U∗ =UL , V ∗ =V R (14)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:701–724
DOI: 10.1002/fld



706 R. COMBLEN ET AL.

where the L and R superscripts denote values taken at the left and right side of the interface,
respectively. Expressing the original variables in terms of the characteristic ones, we get:

�=U+V, u=
√
g

h
(U−V ) (15)

and we derive the classical well-known expressions:

�∗ =UL +V R ={�}+
√
h

g
[u], u∗ =

√
g

h
(UL −V R)={u}+

√
g

h
[�] (16)

with {a}=(aL +aR)/2 the mean and [a]=(aL −aR)/2 the jump.
The same methodology can be applied to the hybrid continuous/discontinuous finite element pair.

The interface terms in the elevation equation disappear due to the continuity of the test functions,
as corresponding equal contributions are added at a node by the two elements surrounding the
interface. If � is continuous, (16) degenerates to:

�∗ =�+
√
h

g
[u], u∗ ={u} (17)

To assess the quality of this formulation with the three finite element pairs, we have performed
a convergence analysis on a wave problem with periodic boundary conditions (Figure 2). We
observe second-order accuracy for each discretization. The optimal rate of convergence observed
with the hybrid discretization PDG

1 −P1 shows that using a mixed discontinuous–continuous pair
of elements is not a priori a bad idea, even if the number of degrees of freedom is different, and
hence the symmetry of the discretization is broken.

Figure 2. Convergence analysis for the wave equation with periodic boundary conditions. Second-order
convergence is observed on both fields for three mixed linear continuous/discontinuous discretizations.
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3. TWO-DIMENSIONAL DISCRETIZATION OF THE SHALLOW WATER EQUATIONS

Let us now consider the complete shallow water equations including inertia terms, Coriolis effects,
viscous terms, and both wind and bottom stresses. It is usual to distinguish two classical formula-
tions, when deriving a numerical scheme. On the one hand, the conservative formulation in terms
of the total depth H and the transport Hu read as:

�H
�t

+∇·(Hu)=0 (18)

�Hu
�t

+∇·(Huu)+ f k×(Hu)+gH∇(H−h)=∇·(H�(∇u))+ s
s+sb
�

(19)

with h the depth at rest, f the Coriolis factor, k the vertical unit vector, ss and sb the surface and
bottom stresses, � the density and � the eddy viscosity. On the other hand, the non-conservative
formulation in terms of free-surface elevation � (with H =h+�) and velocity u read as:

��

�t
+∇·((h+�) u)=0 (20)

�u
�t

+u·(∇u)+ f k×u+g∇�= 1

H
∇ ·(H�(∇u))+ s

s+sb
�H

(21)

It is customary to use the conservative formulation when deriving finite difference schemes for
the shallow water equations in order to obtain a conservative numerical scheme. However, in a
continuous framework, both formulations are strictly equivalent.

In this paper, we use the non-conservative form of the shallow water equations to derive the
weak formulation, with a nonlinear approximate Riemann solver deduced from the conservative
form of the same equations. This approach might appear exotic but it is motivated by the following
facts. First, it is natural to write a Riemann solver in terms of the fluxes of quantities to be
conserved. Second, it would be attractive to write a weak conservative formulation but in this case,
the elevation gradient term has to be split into two parts, a flux term and a source term:

gH∇(H−h)= g∇(H2−h2)

2
−g(H−h)∇h (22)

With DG methods, both terms are not treated in the same way. It has been shown that the scheme
may exhibit non-physical oscillations if the integration is not accurate enough [13]. Therefore,
a weak non-conservative formulation seems more efficient and robust in the considered nume-
rical discretization.

3.1. Non-conservative weak formulation

The weak form of this non-conservative formulation read as:

∑
e

(〈
��

�t
�̂

〉
�e

+〈∇·((h+�) u) �̂〉�e

)
=0 (23)
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∑
e

(〈
�u
�t

·û
〉
�e

+〈u·(∇u) · û〉�e +〈 f (k×u) · û〉�e +g〈(∇�) ·û〉�e

)

=∑
e

(〈
1

H
∇·(H�(∇u)) · û

〉
�e

+
〈
ss+sb
�H

·û
〉
�e

)
(24)

Again integrating by parts, we get:

∑
e

(〈
��

�t
�̂

〉
�e

+〈〈(h+�∗)u∗
n �̂〉〉��e

−〈(h+�) u·∇�̂〉�e

)
=0 (25)

∑
e

(〈
�u
�t

·û
〉
�e

+〈〈u∗
nu

∗ ·û〉〉��e
−〈∇·(uû) ·u〉�e

+〈 f (k×u) ·û〉�e +g〈〈�∗ûn〉〉��e
− g〈�(∇· û)〉�e

)

=∑
e

(〈〈
�

{
�u
�n

}
·û
〉〉

��e

−〈�(∇u) :(∇û)〉�e

+
〈
�
1

H
(∇H) ·(∇u) · û

〉
�e

+
〈
ss+sb
�H

·û
〉
�e

)
(26)

The vector quantities multiplied by the outward normal are denoted with an n subscript. Again,
the variables used in the boundary integrals are doubled-valued, and are denoted with a star
superscript. However, for the diffusive flux, it is natural to take the centered values denoted by
{ }, as diffusive phenomena are isotropic. As explained in the Introduction, a specific treatment is
needed to obtain a stable and accurate discretization of the diffusive term when using discontinuous
elements for the velocities. In this case, the following term is added on the right-hand side of
equation (26): ∑

e
(−〈〈�û·[u]〉〉) (27)

with � a penalization parameter defined as:

�= �(p+1)(p+2)

h
(28)

with h a typical length scale of the element, and p the polynomial order of the finite element
space. This value of the penalization parameter has been proposed in [34].

3.2. Approximate nonlinear Riemann solver

Unfortunately, a Riemann solver cannot be applied on the non-conservative form of the equations,
as they are not in flux form. To derive the Riemann solver, we use the conservative form (18)
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and (19) of the shallow water equations, where the dissipation, Coriolis and diffusion terms are
neglected. Considering u as the velocity normal to the interface, and v the velocity tangent to the
interface, the flux read as:

F=
⎛
⎜⎝

FH

FHu

FHv

⎞
⎟⎠=

⎛
⎜⎜⎜⎝

Hu

Huu+ g

2
H2

Huv

⎞
⎟⎟⎟⎠ (29)

The exact Riemann solver requires the resolution of a nonlinear problem at each integration point. It
is usually preferred to use an approximate Riemann solver. In order to deduce such an approximate
Riemann solver, the next step consists of linearizing the fluxes. The Jacobian matrix of the fluxes is:

J =

⎛
⎜⎜⎝

0 1 0

−u2+gH 2u 0

−uv v u

⎞
⎟⎟⎠ (30)

Finally, we use the Roe averages to obtain an approximate Jacobian matrix Jlinearized, as in
classical textbooks [35]. This rule can be deduced easily from the Rankine–Hugoniot relation:

Jlinearized

⎛
⎜⎝

[H ]
[Hu]
[Hv]

⎞
⎟⎠=[F] (31)

As the first line of the Jacobian matrix is linear, the Rankine–Hugoniot relation leads to an
underdetermined system. To obtain a unique solution of the system, we select the arithmetic mean
for H , and we get the classical Roe averages:

HRoe={H} (32)

uRoe= uL
√
HL +uR

√
HR√

HL +√
HR

(33)

vRoe= vL
√
HL +vR

√
HR√

HL +√
HR

(34)

By substituting (H,u,v) by (HRoe,uRoe,vRoe) in the Jacobian, the approximate Riemann values
of the conservative variables can be deduced as the exact solution of the linearized problem,
as shown in the illustrative one-dimensional wave equation. The values of the conservative and
non-conservative variables at the interface are given by:

H∗ ={H}+ 1√
gHRoe

([Hu]−uRoe[H ]) (35)

(Hu)∗ ={Hu}+ 1√
gHRoe

(uRoe[Hu]−u2Roe[H ]) (36)
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(Hv)∗ =(Hv)upwind+vRoe({H}−Hupwind)+ 1√
gHRoe

(vRoe[Hu]−uRoevRoe[H ]) (37)

�∗ =H∗−h (38)

u∗ = (Hu)∗

H∗ (39)

v∗ = (Hv)∗

H∗ (40)

4. MESH REFINEMENT METHODOLOGY

4.1. Description of the meshes

Convergence tests are carried out with a family of 25 meshes adapted to the reference solution
of the flow except for both wave problems where uniform unstructured meshes are used. We
use adapted meshes rather than uniform meshes, since some of the studied flows have western
boundary layers that need to be sufficiently resolved to observe the asymptotic convergence of
the schemes. Using uniform meshes would require many more elements to observe asymptotic
behavior. Note that this is different from mesh adaptation in time, where the mesh is adapted to
the numerically computed flow during the simulation, as in [4]. The greatest eigenvalue of the
elevation field’s Hessian matrix is used as an a priori error estimator, since with linear elements,
the error is dominated by the quadratic component of the solution. We define a reference edge
length field � as:

�(x, y)=
√∫

� e(x ′, y′)dx ′dy′
e(x, y)

(41)

where e(x, y) is the norm of the greatest eigenvalue of the Hessian matrix of the elevation field. The
meshes are generated using Gmsh [36], where we use h� as edge-length field, with h as constant
over the domain. The generated meshes have therefore about 1/(ah2) elements, with a≈0.8 the
typical area of a triangle whose edges have unit length. Such meshes are designed optimally
for schemes giving second-order accuracy. However, the mesh need not be optimally adapted
to observe the right convergence behavior. If it is suitably adapted, asymptotic convergence will
occur with fewer elements. In Figure 3, we show the reference edge-length field � and five of the
corresponding meshes for the nonlinear Munk test case. The 9th finest mesh of each family, made
of about 2500 triangles, is shown in Figures 5–9. Reference solutions are obtained using highly
accurate PDG

3 –PDG
2 scheme for Stokes problem and PDG

3 –PDG
3 scheme for all other problems,

using the same discrete formulation and time-stepping algorithm on the finest mesh used for the
convergence tests.

4.2. Description of the 8 test cases

In realistic applications, a process, i.e. advection, geostrophy, diffusion, etc., can be the leading
phenomena in some areas while being almost negligible in other areas for a single computation.
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Figure 3. Sketch of the edge-length field � and five corresponding meshes for the nonlinear Munk test case.

Therefore, the limit cases including or not including this phenomenon have both to be solved
accurately. Unfortunately, it is not the case for some schemes that would appear to be attractive
otherwise.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:701–724
DOI: 10.1002/fld



712 R. COMBLEN ET AL.

Figure 4. Sketch of the elevation and velocity fields for the unsteady (top, after 1 h of physical time)
and steady (bottom) wave test cases.

Figure 5. Typical mesh and sketch of the elevation and velocity fields for the Stokes test case.

Considering typical oceanic and coastal flows, we define a series of test cases, with the corre-
sponding relevant meshes, detailed in Figures 4–9. The objective is to fairly compare the proposed
finite element pair. Three limit flow states of the shallow water system, namely geostrophy, wave
propagation and viscosity, are tested separately, and then the complexity of the problem is increased
towards more realistic computations. Each flow develops in a square basin of 1000×1000km.

Some of the test cases use a zonal wind stress, defined as:

ss =0.1×sin
(
�
y

L

)
ex (42)
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Figure 6. Typical mesh and sketch of the elevation and velocity fields for the
geostrophic equilibrium test case.

Figure 7. Typical mesh and sketch of the elevation and velocity fields for the Stommel gyre test case.

Figure 8. Typical mesh and sketch of the elevation and velocity fields for the Munk gyre test case.

inducing a clockwise circulation, and a linear dissipation term defined as:

sb=−�h�u (43)

For all the test cases, we use slipping coasts. The test cases with viscosity need a second
boundary condition, so we cancel out the normal flux of tangential velocity, and we compute the
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Figure 9. Typical meshes and sketch of the elevation and velocity fields for the nonlinear
Stommel (top) and Munk (bottom) gyres.

normal flux of normal velocity with the interior value of the velocity. Table I summarizes the
physical parameters that define each test case.

4.3. Wave equation

As a first test case, we consider the linear wave equation:

��

�t
+∇ ·(hu)=0 (44)

�u
�t

+g∇�=0 (45)

It is the simplest approximation of the shallow water equations. Wave phenomena are the leading
effects in small scale low Froude number flows. A Gaussian is given as initial condition for the
elevation, and we observe the solution after 1 h, so that the wave crest has covered more than
350 km. A fourth-order explicit Runge–Kutta scheme is used to progress in time, with a time step
corresponding to the CFL condition, ensuring that the solution is converged in time.

As the goal of this paper is to show which finite element pair may be unstable or exhibit a lack
of convergence, a steady test case is much tougher. Indeed, the spurious modes that can appear in
a finite element discretization are fully excited in steady solution, while they appear progressively
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Table I. Summary of physical parameters for each test case.

Nonlinear
advection and

L H g f 	 � � free-surface Wind
(m) (m) (ms−2) (s−1) (m−1 s−1) (s−1) (ms−2) terms stress

Unsteady wave 106 103 9.81 0 0 0 0 No No

Steady wave 106 103 9.81 0 0 10−6 0 No Yes

Stokes 106 103 9.81 0 0 0 104 No Yes

Geostrophic equilibrium 106 103 9.81 10−4 0 0 0 No No

Stommel gyre 106 103 9.81 10−4 2×10−11 10−6 0 No Yes

Munk gyre 106 103 9.81 10−4 2×10−11 0 104 No Yes

Advective Stommel gyre 106 103 9.81 10−4 2×10−11 5×10−7 0 Yes Yes

Advection Munk gyre 106 103 9.81 10−4 2×10−11 0 3000 Yes Yes

in a time-dependent problem. We then simulate a steady flow where wind forcing is balanced by
linear dissipation:

∇·(hu)=0 (46)

g∇�= s
s

�h
−�u (47)

with �=10−6 s−1.

4.4. Stokes flow

The Stokes equations represent creeping flows, where inertial terms are negligible compared to
viscous terms. This problem is difficult to solve numerically, because the incompressibility equation
acts as a constraint on the velocity field. In order to obtain a mixed discrete formulation that defines
a well-posed problem, it is mandatory to stabilize the discrete formulation or to define the mixed
discretization space in such a way that the LBB condition is satisfied [37]. From a practical point
of view, the discrete space for elevation/pressure must be small enough compared to the discrete
space for velocities in a usual mixed formulation. The wind forcing now balances the viscous
dissipation:

∇·(hu)=0 (48)

g∇�= s
s

�h
+∇·(�∇u) (49)

with �=104ms−2.
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4.5. Geostrophic equilibrium

Geophysical flows experience the Coriolis force due to the Earth’s rotation. It is one of the leading
terms in the large scale shallow water equations. We test the ability of the different methods to
maintain a linear geostrophic equilibrium, where the Coriolis force is in balance with the elevation
gradient. As there is no dissipation, a good numerical scheme should maintain this equilibrium
for a long time. The elevation field is a Gaussian bell of 3m in height. Coriolis parameter f
is 10−4 s−1 in the whole domain. A third-order implicit–explicit Runge–Kutta method is used to
progress in time, with a time-step corresponding to the CFL criterion on advection, the terms
related to gravity waves being treated implicitly. The flow satisfies the following equations:

��

�t
+∇ ·(hu)=0 (50)

�u
�t

+ f k×u+g∇�=0 (51)

4.6. Stommel gyre

A time-dependent problem may not exhibit all the troubles that can be generated by the discretiza-
tion. The steady counterpart to the geostrophic equilibrium is the Stommel gyre [38]. The Coriolis
effect is taken into account using the 	-plane approximation, f = f0+	y, with f0=10−4 s−1 and
	=2×10−11m−1 s−1, corresponding to a midlatitude domain in the northern hemisphere. The
flow is forced by the wind stress defined at Equation (42), that induces a clockwise circulation,
while a linear dissipation with coefficient �=10−6 s−1 balances the forcing. The variation of this
Coriolis parameter induces Rossby waves that propagate westward and generate a strong boundary
current. The flow satisfies the following equations:

��

�t
+∇ ·(hu)=0 (52)

�u
�t

+ f k×u+g∇�= s
s

�h
−�u (53)

4.7. Munk gyre

The Munk gyre test case is similar to the Stommel one, the difference is that now the wind forcing
is balanced by viscous dissipation rather than linear damping [38]. The viscosity parameter is
constant in space and taken as �=104ms−2. The flow satisfies the following equations:

��

�t
+∇ ·(hu)=0 (54)

�u
�t

+ f k×u+g∇�= s
s

�h
+∇·(�∇u) (55)

This test case is often easier to solve by all numerical schemes. The viscous terms are typical
elliptic contributions removing most of the troubles that may pollute the inviscid solution.
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4.8. Nonlinear problems

Finally, we incorporate the advection terms in both the Stommel and the Munk gyre problems.
The first one is inviscid, satisfying the system:

��

�t
+∇·((h+�)u)=0 (56)

�u
�t

+u·∇u+ f k×u+g∇�= s
s

�H
−�u (57)

with the same Coriolis factor as the two previous test cases and a linear dissipation of coefficient
�=5×10−7. The second one is viscous, with viscosity �=3000ms−2:

��

�t
+∇·((h+�)u)=0 (58)

�u
�t

+u·∇u+ f k×u+g∇�= s
s

�H
+ 1

H
∇·(H�∇u) (59)

The numerical handling of the advection term is not simple and requires a suitable numerical
strategy. However, some difficulties appearing in the problems without advection terms are some-
times solved by the diffusion introduced within the discretization of those advection terms.

5. NUMERICAL RESULTS

To quantify the errors for all finite element pairs for each test case, convergence studies are given
in Figures 10 and 11. The left panels show the diagrams for the elevation field, while the right
panels show the diagrams for velocities. The dots represent the values of the L2 norm of the
discretization error normalized by the range of the field. The slopes of the linear mean-square
regression, representing the orders of accuracy, are given in the legends. To further quantify the
optimality of the method, the error of the best solution that can be obtained in the sense of the L2
norm is traced in a continuous line. It is defined as the error in L2 norm between the reference
solution and the L2 projection of this reference solution onto the finite element space defined with
the current mesh.

A few conclusions may be drawn directly. The velocity fields of PNC
1 –P1 and PDG

1 –P1 pairs
lack convergence in the absence of viscosity. The PNC

1 –P1 pair was known to have such a
behavior [26, 29]. This trouble is related to the wave component of the shallow water problem.
The velocity field has too many degrees of freedom and a velocity noise can develop with little
influence on the elevation field. This noise component is bounded, as we still observe convergence
at a reduced rate. The boundedness of the noise implies that the noise is not an eigenvector lying
in the nullspace of the discrete operator, hence this noise was not shown by the study in [27].
This mode depends on the structure of the mesh. With structured meshes made of squares divided
in half, optimal convergence is observed for both fields [29]. The same observation has been
made for dispersion and dissipation properties, where analytical considerations on structured grids
give promising results [28, 39, 40], while numerical analysis on unstructured grids exhibits disap-
pointing results [31]. Using structured meshes of squares divided in four where all triangles are
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Figure 10. Convergence analysis. The circles denote the L2 error, while continuous lines indicate the error
of the L2 projection of the reference solution onto the finite element space. The light gray lines indicate
reference second-order convergence. The errors are plotted against the ratio h between the edge length

and the reference size field. The number of elements scales as h2.
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Figure 11. Convergence analysis. The circles denote the L2 error, while continuous lines indicate the error
of the L2 projection of the reference solution onto the finite element space. The light gray lines indicate
reference second-order convergence. The errors are plotted against the ratio h between the edge length

and the reference size field. The number of elements scales as h2.
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Figure 12. Sketch of the error for the steady wave problem, using PNC
1 –P1 on the ‘Union Jack’ mesh.

not topologically identical, a relatively structured noise appears (see Figure 12). It is therefore
possible to carry out spectral analysis as in [39, 40], to further characterize the behavior of this
pair.

The PDG
1 −P2 pair demonstrates its very good properties in the vast majority of the test cases.

An optimal rate of convergence for velocities is observed in all the test cases, and furthermore the
solution is always quite close to the optimal solution for this element (i.e. close to the solid line in
the right panels of Figures 10 and 11). Optimal convergence rate for elevation is obtained not only
for the time-dependent test cases, where initial condition was third-order accurate, but also for the
linear Stommel gyre. The latter can be explained as the functional spaces are optimally designed for
geostrophy, as the gradient of the P2 space exactly lies in the PDG

1 space. The nonlinearities seem
to slightly deteriorate the accuracy of the solution to second order as the velocity and elevation
fields are much more coupled.

For the Stokes flow, all the pairs exhibit second-order accuracy for velocities, and a 1.5 order of
convergence for elevations. Our DG method applied to the Stokes equations must be related to the
one from [41, 42], where interface fluxes are deduced from an artificial incompressibility Riemann
problem. The time-dependent shallow water equations do not exhibit a solenoidal constraint for
the velocity field, but in the steady limit, we recover an incompressibility constraint. Therefore,
we use the surface gravity wave speed

√
gh where an arbitrary wave velocity c is used in [41]. An

additional difference is that the BRMPS method (referred as Bassi et al. [13] in the review [15])
is used to treat the diffusion terms, where we use an incomplete IP method (IIPG method in the
book [17]). Still with DG, the same behavior is observed in [43], using LDG formulation, and
proof that first- and second-order accuracies are expected for pressures and velocities, respectively,
is given. All the finite element pairs do converge, but it cannot be excluded that some of them
exhibit pressure modes on specific grids.

When Coriolis comes into play, the PDG
1 –PDG

1 pair lacks almost half an order of convergence
for velocities. The velocity field in geostrophic equilibrium with a piecewise linear elevation field is
piecewise constant. Then, interface terms are needed in the formulation to smooth the velocity field.
Indeed, some flux terms exist for the normal velocity, but not for the tangent velocity. Therefore,
some jumps on tangent velocities are allowed by the formulation, as shown in Figure 13 for the
inviscid Stommel problem on a structured grid. The same half order of convergence is lost with
second-order shape functions (PDG

2 −PDG
2 ) on the same meshes.

The nonlinear advection terms do not significantly change the behavior of the different schemes.
For the PDG

1 –PDG
1 , in the inviscid case, the lack of convergence on the velocity field is propagated
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Figure 13. Zonal (center) and meridional (right) velocity field of the linear Stommel problem solved with
the PDG

1 –PDG
1 pair on a structured mesh (left).

in the elevation field. The PNC
1 –P1 and PDG

1 –P1 velocity solutions are slightly smoothened by
the numerical dissipation associated with the handling of the advective term, but the optimal
convergence rates are not recovered. High Froude numbers are needed for the interface dissipation
to be large enough to smooth the solution and recover the optimal behavior. Indeed, the Gulf of
Mexico test case from [26] corresponds to a maximum Froude number of more than 1

4 , and the
Williamson’s test cases on the sphere, that were solved with optimal convergence rate in [44], are
also advection dominated, with Froude numbers as high as 1

10 .
The PNC

1 –PNC
1 pair has overall quite an encouraging behavior. The pair shows optimal conver-

gence rate in all the test cases, except the Stokes flow. Those rates are never lower than the rates
observed with the PDG

1 –P2 pair. The error values are slightly higher than those for PDG
1 –P2 or

PDG
1 –PDG

1 (when optimal rates are observed), but it must be noticed that it only requires half the
number of degrees of freedom of the DG method. Moreover, the PNC

1 element naturally treats
diffusion terms, while PDG

1 requires the IP method.

6. CONCLUSIONS

We provide a unified framework to define finite element formulations of the shallow water equa-
tions with continuous, discontinuous or partially discontinuous discretizations. We then perform a
systematic numerical comparison of five relevant finite element pairs used in oceanic and coastal
flows. In short, the following facts are observed:

• Large physical viscosity is required to obtain optimal order of convergence for PNC
1 –P1 and

PDG
1 –P1 pairs.

• The accuracy of DG discretization of Coriolis-dominated flows is deteriorated by the lack of
control on the jumps of tangent velocity.

• PDG
1 –P2 gives accurate results in all ranges of flow, at the expense of second-order shape

function for elevation, hence higher-order quadrature rules.
• PNC

1 –PNC
1 appears to behave optimally in all ranges of flow with a reasonable number of

degrees of freedom. The diffusion terms are naturally handled by the discrete space.
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In terms of CPU efficiency, sharp conclusions are difficult to draw, as these are strongly imple-
mentation dependent. For explicit computations, using the same number of elements, PNC

1 –PNC
1

and PDG
1 –PDG

1 have truly similar cost per time step, as most of the CPU time is spent computing the
finite element integrals, which require the same accuracy for both finite element pairs. The compu-
tation of spatial operators for PDG

1 –P2 is more expensive as the higher order of the shape function
for elevation requires more accurate quadrature rules. The DG pair has all the degrees of freedom
associated with the triangles, giving a block structure that speeds up the assembling procedure.
For implicit computations, the CPU time spent in the linear solver is important. The size of the
system depends on the number of degree of freedom per element. The requirements of PDG

1 −PDG
1

and PDG
1 −P2 pairs are similar, with, respectively, 9 and 8 dof per element. PNC

1 −PNC
1 behaves

optimally in all our test cases, and uses only 4.5 degrees of freedom per element. Therefore, it is
an interesting alternative that should be further studied to confirm its promising behavior.
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